Learning based Methods for Code Runtime Complexity

Prediction
Jagriti Sikka, Kushal Satya, Yaman Kumar, Shagun Uppal, Rajiv Ratn Shah, Roger Zimmermann

Objective

Automatic prediction of runtime com-
plexity of the source codes collected
from Online Judges using traditional

ML classification models and neural
code embeddings.

Motivation

Time Complexity computation is a cru-
cial aspect in the study and design
of well-structured and computation-
ally efficient algorithms. Code runtime
complexity prediction can have appli-
cations in:

e Automatic grading of coding
assignments.

e Fast performance software
development, by integrating
complexity prediction models with
IDEs.

Dataset Curation

The data collection and preparation in-
volved the following phases:

e Data Collection: Source codes of
different runtime complexities were
collected using Codeforces API.
Multiple topics of Data Structures
And Algorithm were considered
while collecting the dataset.

e Data Annotation: A dataset of
932 codes |1] across b complexity
classes, namely, O(1), O(logn),
O(n), O(nlogn) and O(n?), was

curated and manually annotated.

Contributions

e Releasing a novel annotated
dataset of program codes with
their runtime complexities.

e Proposing baselines of ML models
with hand-engineered features

and study of how these features
affect the computational efficiency

of the codes.

e Proposing another baseline, the
ceneration of code embeddings
from Abstract Syntax Tree(AST)
of source codes, to perform
classification.

Feature Engineering

For the first baseline, we trained tradi-
tional ML models on key features ex-
tracted from code.

e Feature Identification: We
identified 14 key features that
represent the fundamental coding
constructs of any programming
language, for e.g., number of loops,
nested loop depth, use of sort calls
ete.

e Feature Extraction: We
extracted these features from the
Abstract Syntax Tree(AST) of
source codes. We used Eclipse JD'T
plugin [2] to extract the ASTSs of
codes and traversed the extracted
ASTs to compute the values of the
features.

We found a strong correlation be-
tween some features and the complex-
ity classes. For example, depth of
nested loops was mostly 1 for complex-
ity class O(n) whereas it was mostly 2
for complexity class O(n?).

Code Embeddings

AST of a program captures compre-
hensive information regarding a pro-

oram’s structure, the syntactic and se-
mantic relationships between variables
and methods. Since an AST is infact
a graph, we used graph2vec , a neural
embedding framework (3], to compute
code embeddings. Graph2vec learns
task agnostic embeddings in an unsu-

pervised manner by identifying non-
linear graph constructs, and does not
require a large corpus of data, making
it apt for our problem.

Baselines Comparison

e For first baseline, we trained 6

classification models on
hand-engineered features. SVM and
Random Forest classifiers achieved
highest accuracy:.

e For second baseline, we computed
1024-dimensional code embeddings

from ASTs using graph2vec and
trained an SVM classifier on these
embeddings.

e The SVM accuracy of both baseline
models was comparable; code
embeddings achieved slightly higher
precision and recall.

Complexity class

Number of samples

O(n)
O(n?)
O(nlogn)
O(1)
O(logn)

335
200
150
143
55

Table 1:Classwise data distribution

Baseline

Accuracy Precision Recall

Feature Engineering

Code Embeddings

7296 6943 70.56
73.806 74 (3

Table 2:Accuracy, Precision, Recall values for SVM based classifier for the two baselines

Ablation Technique Accuracy
Feature Engineering Code Embeddings
Label Shuffling 48.29 36.78
Method /Variable ~ Name NA 84.21
Alteration
Replacing Input Variables NA 16.66
with Constant Literals
Removing Graph Sub-/66.92 87.56
structures

‘able 3:Data Ablation Tests Accuracy of feature engineering and code embeddings baselines

Data Ablation
Experiments

We designed four different data abla-
tion experiments to get insight into the
predictions of the baselines. These ex-
periments were designed to study the
robustness of the baselines to accom-
modate changes in the dataset and its
accuracy of prediction of unseen data
points and outliers.

Code embedding approach performed
significantly better in these experi-
ments and thus is a better baseline.

Conclusion

Automatic prediction of runtime com-
plexity of codes is a novel problem
with interesting potential applications.
We believe a public code-complexity
dataset will enable further research in
this domain.

References

1] Our Dataset Link.
https://github.com /midas-research /corcod-
dataset.

2] Eclipse JDT.

https://projects.eclipse.org/projects/eclipse.jdt.

3] Annamalai Narayanan, Mahinthan
Chandramohan, Rajasekar Venkatesan,
Lihui Chen, Yang Liu, and Shantanu
Jaiswal.
oraph2vec: Learning distributed
representations of graphs.

CoRR, abs/1707.05005, 2017.

e Jagriti Sikka, Adobe, Noida:
jsikka@adobe.com

e Kushal Satya, Adobe, Noida:
satya@adobe.com

e Yaman Kumar,

Adobe, Noida:

ykumar@adobe.com

e Shagun Uppal, MIDAS, III'T
Delhi: shagun16088@iiitd.ac.in
e Rajiv Ratn Shah, MIDAS, III'T

Delhi: rajivratn@iiitd.ac.in

e Roger Zimmermann,
NUS, Singapore:
rogerzQcomp.nus.edu.sg

Arizona State Bloomberg
University

llllllllllllllllllllllllllllllll

mailto:jsikka@adobe.com
mailto:satya@adobe.com
mailto:ykumar@adobe.com
mailto:shagun16088@iiitd.ac.in
mailto:rajivratn@iiitd.ac.in
mailto:rogerz@comp.nus.edu.sg

