
Learning based Methods for Code Runtime Complexity
Prediction

Jagriti Sikka, Kushal Satya, Yaman Kumar, Shagun Uppal, Rajiv Ratn Shah, Roger Zimmermann

Objective

Automatic prediction of runtime com-
plexity of the source codes collected
from Online Judges using traditional
ML classification models and neural
code embeddings.

Motivation

Time Complexity computation is a cru-
cial aspect in the study and design
of well-structured and computation-
ally efficient algorithms. Code runtime
complexity prediction can have appli-
cations in:
•Automatic grading of coding
assignments.

•Fast performance software
development, by integrating
complexity prediction models with
IDEs.

Dataset Curation

The data collection and preparation in-
volved the following phases:
•Data Collection: Source codes of
different runtime complexities were
collected using Codeforces API.
Multiple topics of Data Structures
And Algorithm were considered
while collecting the dataset.

•Data Annotation: A dataset of
932 codes [1] across 5 complexity
classes, namely, O(1), O(logn),
O(n), O(nlogn) and O(n2), was
curated and manually annotated.

Contributions

•Releasing a novel annotated
dataset of program codes with
their runtime complexities.

•Proposing baselines of ML models
with hand-engineered features
and study of how these features
affect the computational efficiency
of the codes.

•Proposing another baseline, the
generation of code embeddings
from Abstract Syntax Tree(AST)
of source codes, to perform
classification.

Feature Engineering

For the first baseline, we trained tradi-
tional ML models on key features ex-
tracted from code.
•Feature Identification: We
identified 14 key features that
represent the fundamental coding
constructs of any programming
language, for e.g., number of loops,
nested loop depth, use of sort calls
etc.

•Feature Extraction: We
extracted these features from the
Abstract Syntax Tree(AST) of
source codes. We used Eclipse JDT
plugin [2] to extract the ASTs of
codes and traversed the extracted
ASTs to compute the values of the
features.

We found a strong correlation be-
tween some features and the complex-
ity classes. For example, depth of
nested loops was mostly 1 for complex-
ity class O(n) whereas it was mostly 2
for complexity class O(n2).

Code Embeddings

AST of a program captures compre-
hensive information regarding a pro-
gram’s structure, the syntactic and se-
mantic relationships between variables
and methods. Since an AST is infact
a graph, we used graph2vec , a neural
embedding framework [3], to compute
code embeddings. Graph2vec learns
task agnostic embeddings in an unsu-
pervised manner by identifying non-
linear graph constructs, and does not
require a large corpus of data, making
it apt for our problem.

Baselines Comparison

•For first baseline, we trained 6
classification models on
hand-engineered features. SVM and
Random Forest classifiers achieved
highest accuracy.

•For second baseline, we computed
1024-dimensional code embeddings
from ASTs using graph2vec and
trained an SVM classifier on these
embeddings.

•The SVM accuracy of both baseline
models was comparable; code
embeddings achieved slightly higher
precision and recall.

Complexity class Number of samples
O(n) 385
O(n2) 200

O(nlogn) 150
O(1) 143

O(logn) 55
Table 1:Classwise data distribution

Baseline Accuracy Precision Recall
Feature Engineering 72.96 69.43 70.58
Code Embeddings 73.86 74 73

Table 2:Accuracy, Precision, Recall values for SVM based classifier for the two baselines

Ablation Technique Accuracy
Feature Engineering Code Embeddings

Label Shuffling 48.29 36.78
Method/Variable Name
Alteration

NA 84.21

Replacing Input Variables
with Constant Literals

NA 16.66

Removing Graph Sub-
structures

66.92 87.56

Table 3:Data Ablation Tests Accuracy of feature engineering and code embeddings baselines

Data Ablation
Experiments

We designed four different data abla-
tion experiments to get insight into the
predictions of the baselines. These ex-
periments were designed to study the
robustness of the baselines to accom-
modate changes in the dataset and its
accuracy of prediction of unseen data
points and outliers.
Code embedding approach performed
significantly better in these experi-
ments and thus is a better baseline.

Conclusion

Automatic prediction of runtime com-
plexity of codes is a novel problem
with interesting potential applications.
We believe a public code-complexity
dataset will enable further research in
this domain.

References

[1] Our Dataset Link.
https://github.com/midas-research/corcod-
dataset.

[2] Eclipse JDT.
https://projects.eclipse.org/projects/eclipse.jdt.

[3] Annamalai Narayanan, Mahinthan
Chandramohan, Rajasekar Venkatesan,
Lihui Chen, Yang Liu, and Shantanu
Jaiswal.
graph2vec: Learning distributed
representations of graphs.
CoRR, abs/1707.05005, 2017.

Contact Information
• Jagriti Sikka, Adobe, Noida:
jsikka@adobe.com

•Kushal Satya, Adobe, Noida:
satya@adobe.com

•Yaman Kumar,
Adobe, Noida:
ykumar@adobe.com

•Shagun Uppal, MIDAS, IIIT
Delhi: shagun16088@iiitd.ac.in

•Rajiv Ratn Shah, MIDAS, IIIT
Delhi: rajivratn@iiitd.ac.in

•Roger Zimmermann,
NUS, Singapore:
rogerz@comp.nus.edu.sg

mailto:jsikka@adobe.com
mailto:satya@adobe.com
mailto:ykumar@adobe.com
mailto:shagun16088@iiitd.ac.in
mailto:rajivratn@iiitd.ac.in
mailto:rogerz@comp.nus.edu.sg

