Two-Level Classification Using Recasted Data For Low Resource Settings

Shagun Uppal¹, Vivek Gupta², Avinash Swaminathan³, Haimin Zhang⁴, Debanjan Mahata⁴, Rakesh Gosangi⁴, Rajiv Ratn Shah^{1,4} and Amanda Stent⁴

¹IIIT-Delhi, ²University of Utah ³NSUT, ⁴Bloomberg

INTRODUCTION

- To address the scarcity of data in low-resource languages, we use existing classification datasets to create NLI datasets by recasting.
- We propose weakly-supervised constraints (with paired level supervision) to remove inconsistencies in the Textual Entailment (TE) predictions.

- We further use TE predictions for the classification task, with the aim to compensate for the lack of enough labelled classification data.
- This two-step classification makes it more interpretable to analyse the model understanding of reformulated language inputs.

RECASTING DATA

ORIGINAL DATASET

Sentence: Has good streaming quality. Annotation: Positive Set of classes: Positive, Negative, Neutral, Conflict

DIRECT CLASSIFICATION

• c: Context • h: Hypothesis • TE: Textual Entailment

RECA		
 c1: Has good streaming qualit h1: The product got positive reviews from its users. TE label: entailed 	 c1': Has good streaming quality. h1': The product did not get positive reviews from its users. TE label: not-entailed 	
 c2: Has good streaming qualit h2: The product got negative h reviews from its users. TE label: not-entailed c3: Has good streaming qualit h3: The product got neutral reviews from its users. TE label: not-entailed c4 Has good streaming quality h4: The product got conflicting 	 2': The product did not get negative reviews from its users. TE label: entailed y. c3': Has good streaming quality. h3': The product did not get neutral reviews from its users. TE label: entailed . c4': Has good streaming quality. 	
reviews from its users. TE label: not-entailed	reviews from its users. TE label: entailed	
	Recasting	
ORIGINAL D	ATASET	
Sentence: Has good stream Annotation: Positive Set of classes: Positive, Ne		
	DIRECT CLASSIFICATION	CLASSIFICATION

RECASTING DATA

• c: Context • h: Hypothesis • TE: Textual Entailment

RECASTED NLI DATASET					
 c1: Has good streaming quality. h1: The product got positive reviews from its users. TE label: entailed 	c1': Has good streaming quality.h1': The product did not get positive reviews from its users.TE label: not-entailed				
 c2: Has good streaming quality. h2: The product got negative h2': The reviews from its users. TE label: not-entailed 	 c2': Has good streaming quality. he product did not get negative reviews from its users. TE label: entailed 				
 c3: Has good streaming quality. h3: The product got neutral reviews from its users. TE label: not-entailed 	 c3': Has good streaming quality. h3': The product did not get neutral reviews from its users. TE label: entailed 				
 c4 Has good streaming quality. h4: The product got conflicting reviews from its users. TE label: not-entailed 	 c4': Has good streaming quality. h4': The product did not get conflicting reviews from its users. TE label: entailed 				
Recasting					
ORIGINAL DATASET					

Sentence: Has good streaming quality. Annotation: Positive Set of classes: Positive, Negative, Neutral, Conflict

APPROACH: TEXTUAL ENTAILMENT

Textual Entailment (TE).

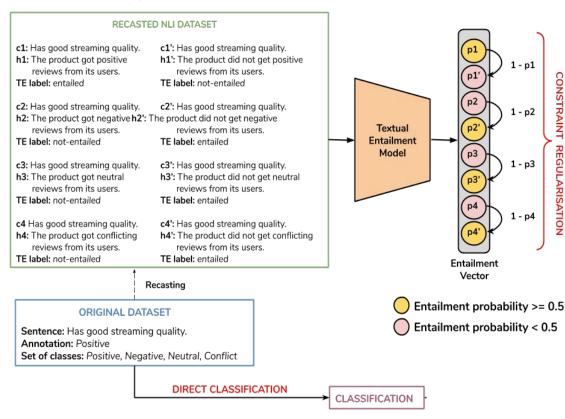
To analyse if the model can **draw reasonable inferences** from the **context to hypothesise** over other related/unrelated data

TEXTUAL ENTAILMENT EXAMPLE

Context-Hypothesis	Label	
p: The kid exclaimed with joy.h: The kid is happy.	entailed	
p: I am feeling happy. h: I am angry.	not-entailed (contradictory)	
p: Suzan lives in Japan. h: Suzan was born in Australia.	not-entailed (neutral)	

Consistency Regularisation (CR).

For any given **context-hypothesis pair** *P*, there exists **another such pair** *P'*, with **negated hypothesis and flipped TE label**.


We leverage this to ensure a pairwise consistency in the entailment predictions for *P* and *P'*, such that they are always complements of each other.

$$\mathcal{L}_{reg} = ||\mathcal{T}(P) + \mathcal{T}(P') - 1_2||^2$$

Here, \mathcal{T} represents the textual entailment network.

TEXTUAL ENTAILMENT

c: Context h: Hypothesis • TE: Textual Entailment

1 - p1

1 - p2

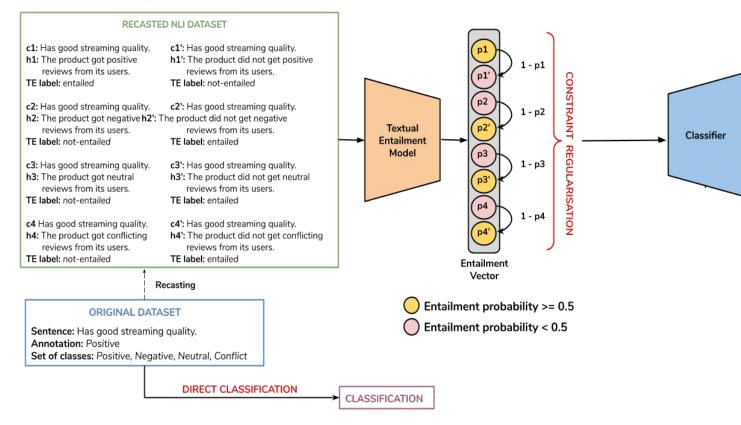
1 - p3

1 - p4

p2

p3

p4


Entailment Vector

CONSTRAINT

REGULARISATION

TEXTUAL ENTAILMENT

● c: Context ● h: Hypothesis ● TE: Textual Entailment

INCONSISTENCY EXAMPLE

Context (Hindi): वह रोया जब उसने अपना पालतू खो दिया			Emotion class (Hindi): दुख		
(English): He cried over his lost pet.			(English): Sad		
Hypothesis (Hindi)	Hypothesis (English)	TE label	Consistency	Prediction	
h1: वह खुश है	h1: He is happy.	not-entailed	Consistent	Correct	
$h1^\prime:$ वह खुश नहीं है	h1': He is not happy.	entailed	Consistent	Correct	
h1 : वह खुश है	h1: He is happy.	not-entailed	Inconsistent	Correct	
$h1^\prime:$ वह खुश नहीं है	h1': He is not happy.	not-entailed	meonsistent	Incorrect	
h1: वह खुश है	h1 : He is happy.	entailed	Inconsistent	Incorrect	
$h1^\prime:$ वह खुश नहीं है	h1': He is not happy.	\bullet entailed		Correct	
h1 : वह खुश है	h1: He is happy.	entailed	Consistent	Incorrect	
h1': वह खुश नहीं है	h1': He is not happy.	not-entailed	Consistent	Incorrect	

APPROACH: TWO-WAY CLASSIFICATION

Two-step Classification.

We extend the binary classification knowledge from **TE to a multi-class classification paradigm** to achieve two-step classification.

- 1. Obtain TE predictions for all re-casted augmentations of any given sentence.
- 2. Use these predictions to find the boundary for multi-class classification decision, as shown below.

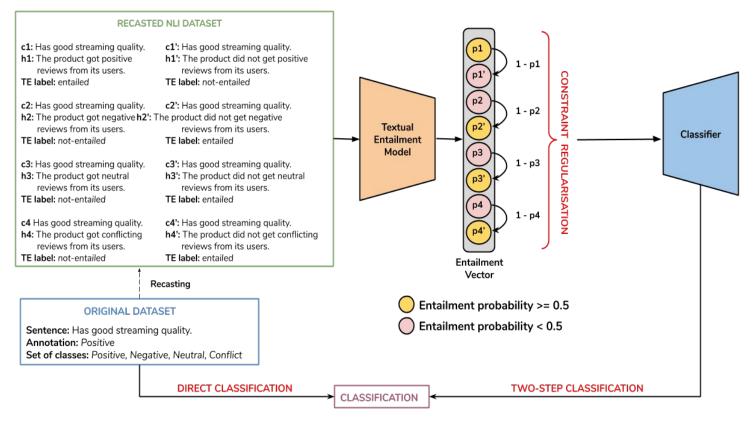
Context: He cried over his lost pet.					
Recasted hypothesis	Binary output				
1. He is happy.	not-entail				
2. He is not happy.	entail				
3. He is angry.	not-entail				
4. He is not angry.	entail				
5. He is sad.	entail				
6. He is not sad.	not-entail				
Emotion Annotation: Sad					

Joint Objective (JO).

The joint end-to-end training objective (instead of independent training of TE and two-step classification) is to create a feedback between 1. and 2.

This prevent the Textual Entailment Model from acting as bottleneck for the Classification Model.

The loss for the joint objective becomes: $\mathcal{L}_{joint} = \mathcal{L}_{TE} + \lambda \mathcal{L}_{clf}$

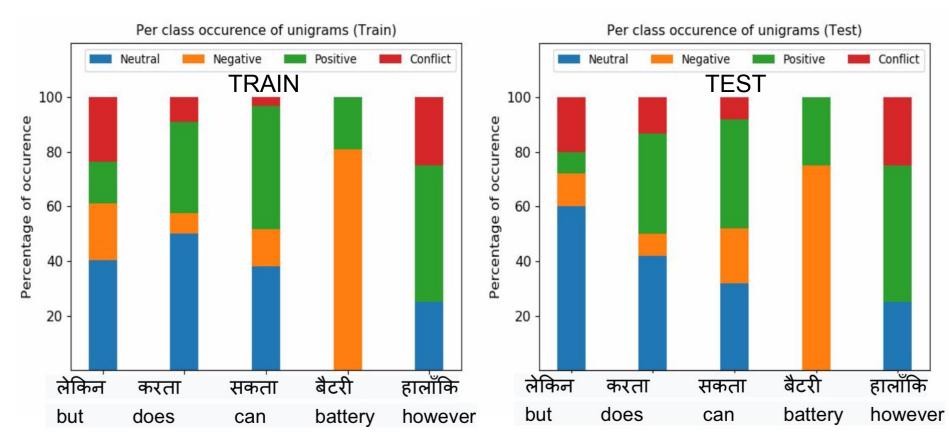

$$\mathcal{L}_{TE} = \sum_k \sum_{j=1}^m -p_{k,j}^{true} \log p_{k,j}$$
 $\mathcal{L}_{clf} = \sum_k \sum_{j=1}^m -c_{k,j}^{true} \log c_{k,j}$

where **λ**: weight of the two-step classification objective, **m**: total number of classes,

 $\mathbf{p}_{k,j}^{true}$ and $\mathbf{c}_{k,j}^{true}$: binary label of sample k belonging to class j, and $\mathbf{p}_{k,j}$ and $\mathbf{c}_{k,j}$: probability of predicted label for sample k to be class j.

TEXTUAL ENTAILMENT, TWO-WAY CLASSIFICATION

• c: Context • h: Hypothesis • TE: Textual Entailment


ORIGINAL DATASET: SEMANTIC PHENOMENON

Semantic	EMANTIC DATASET		# DATA POINTS		
Phenomenon	ΝΑΜΕ	# CLASSES	CLASSIFICATION	NLI (Recasted)	
Sentiment Analysis	Product Review	4	5417	26000	
Emotion Recognition	BHAAV	5	20304	105582	
Discourse Analysis	Hindi Discourse	5	10472	54458	
Topic Modelling	BBC News	6	4335	20752	

	Datasets					
	\mathbf{PR}	BH	HDA	BBC		
Recasted TE / NLI Data						
# Classes	2	2	2	2		
# Train	17336	64972	33508	15556		
# Dev	4328	20300	10470	2592		
# Test	4336	20310	10480	2604		

	Datasets				
	\mathbf{PR}	BH	HDA	BBC	
Direct Classification Data					
# Classes	4	5	5	6	
# Train	4334	16243	8377	3889	
# Dev	541	2030	1047	216	
# Test	542	2031	1048	217	

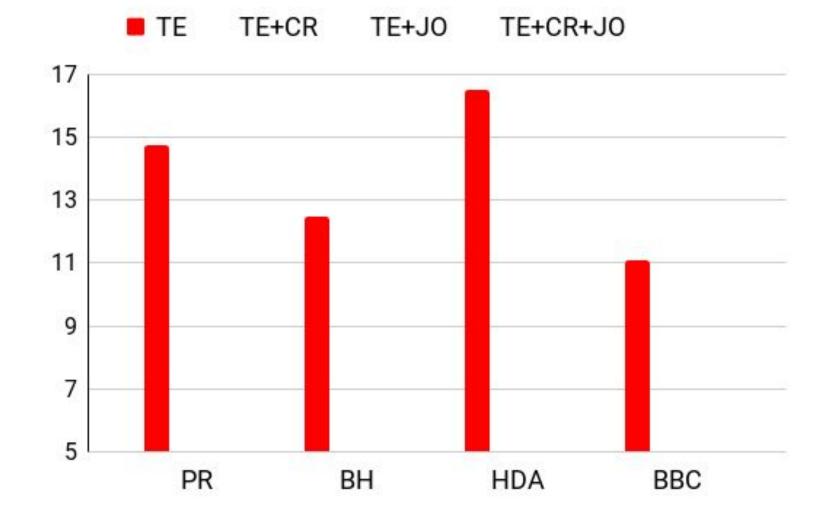
ARTIFACT PROBLEM : MODEL LEARNS SPURIOUS PATTERN

EXPERIMENTS AND RESULTS

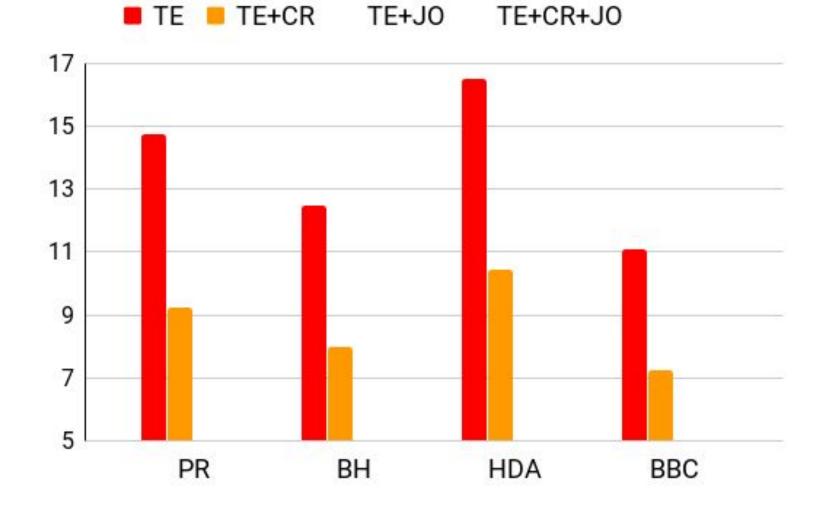
The experiments are conducted so as to answer the following questions:

1. Representations effectiveness to derive **logical entailment** in context-hypothesis pairs on re-casted data?

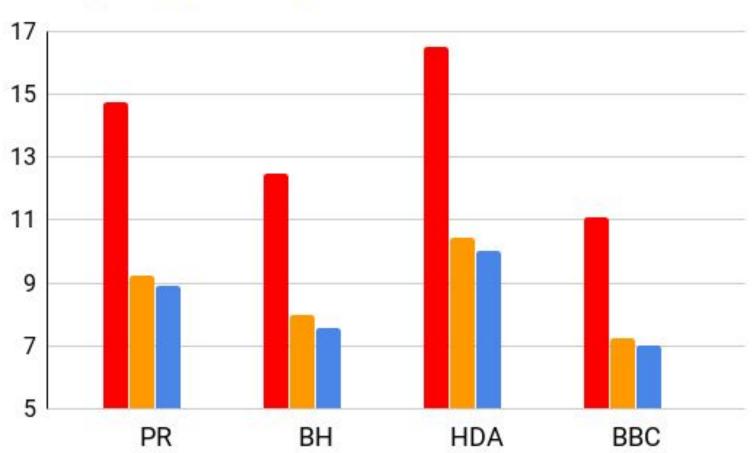
How **consistent/inconsistent** are such representation with their own beliefs? Also, does **consistency regulariser** help in to **mitigate** such model inconsistency?

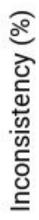

2. Do sentence representation models work well for classification task?

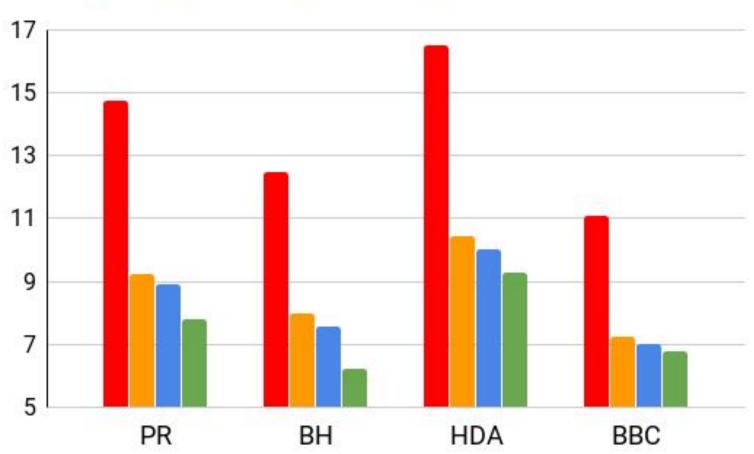
Can re-casted NLI data be queried to **retrieve ground truth classification** label using two-step classification?


Does our feedback through **joint training objective** further useful?

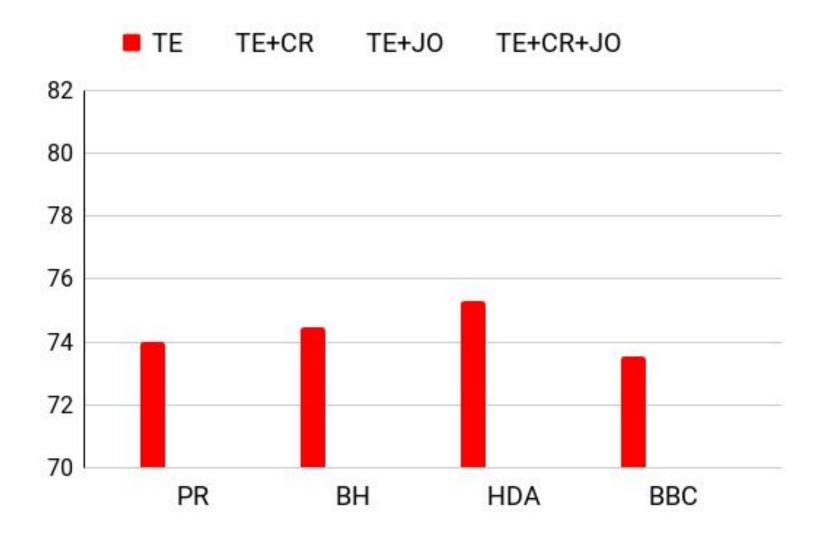
*All results are tested for statistically significant



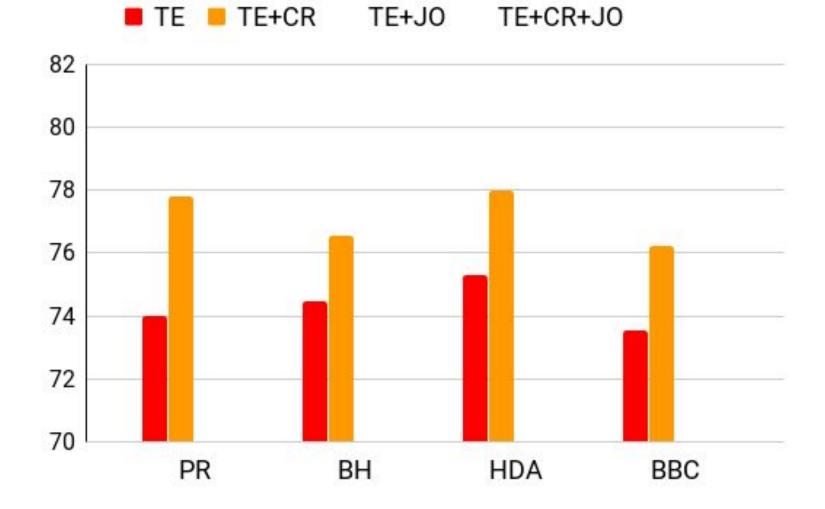




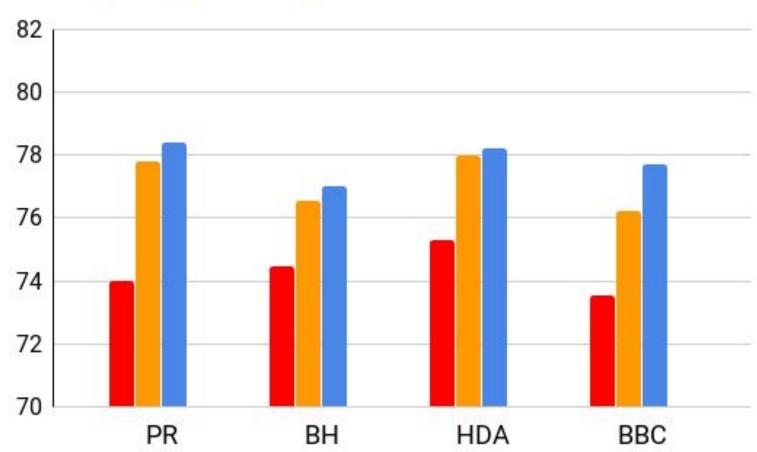
TE TE+CR TE+JO TE+CR+JO

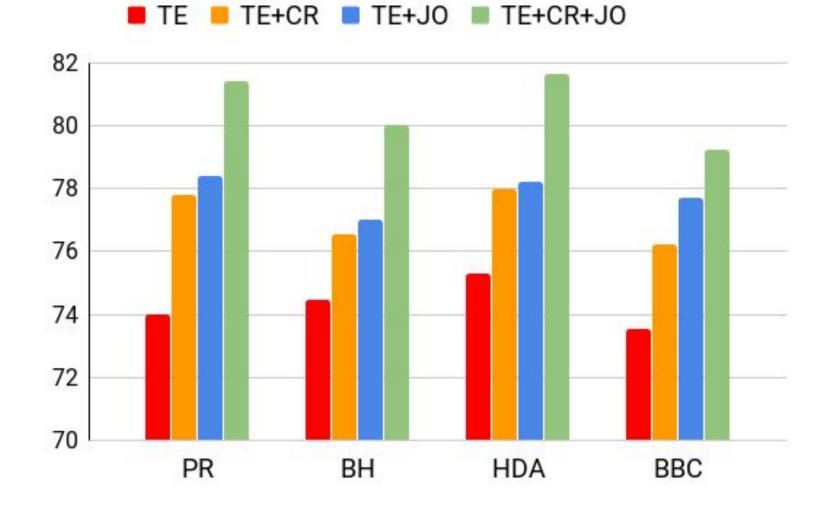


TE TE+CR TE+JO TE+CR+JO

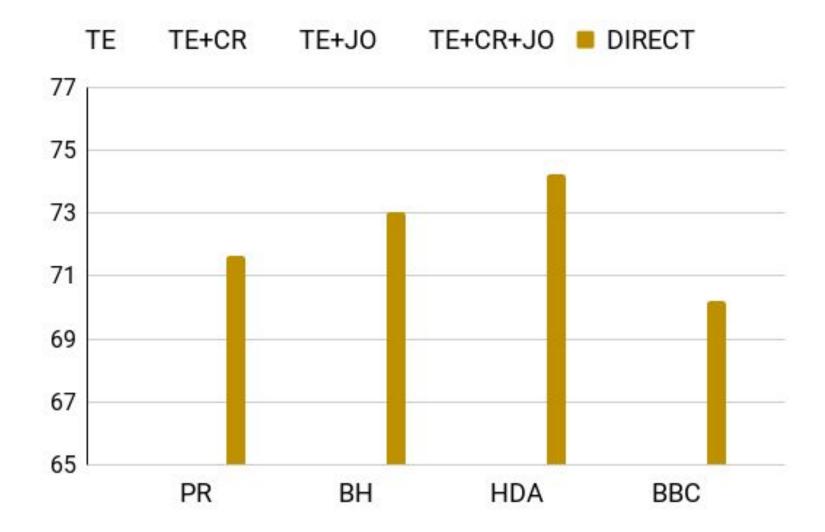

INCONSISTENCY CONCLUSION

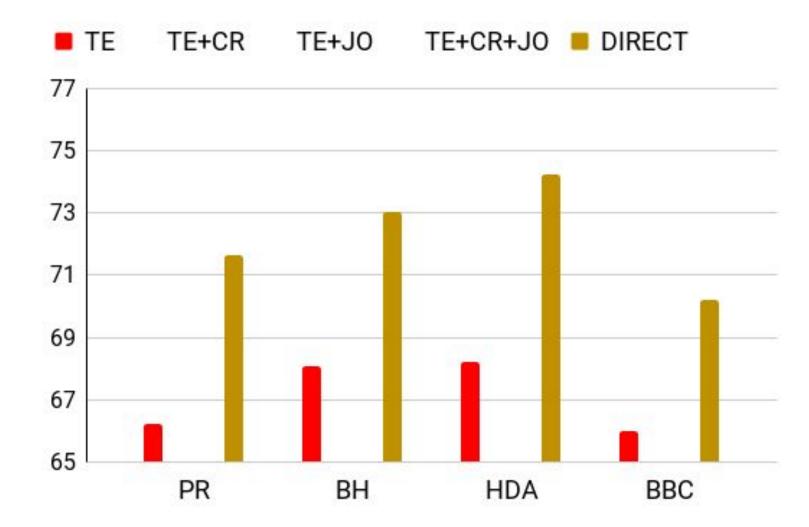
TEXTUAL ENTAILMENT PERFORMANCE

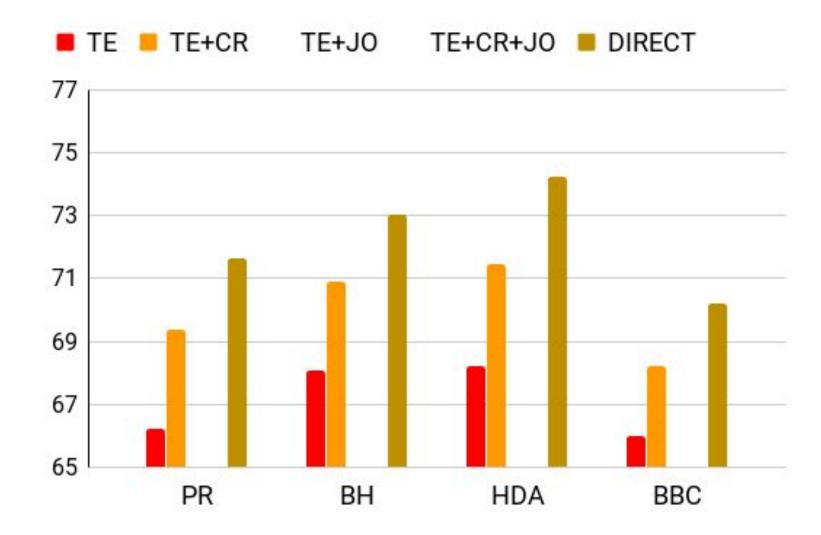


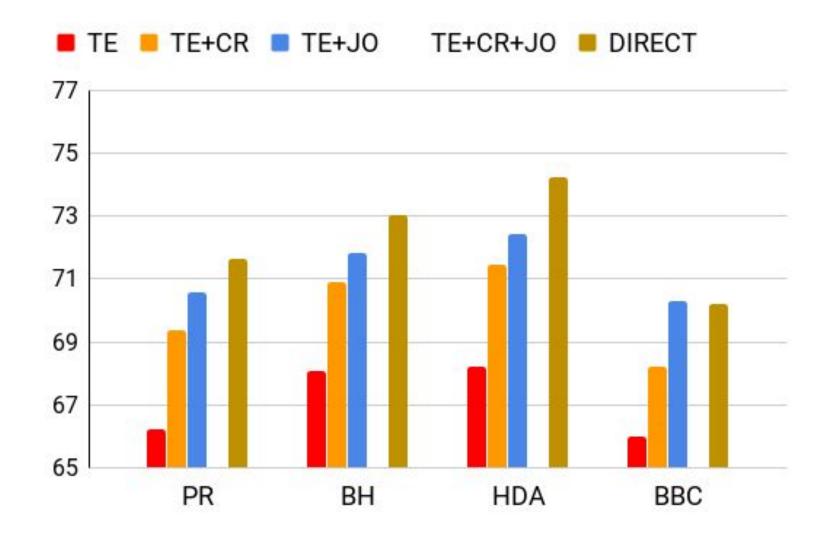


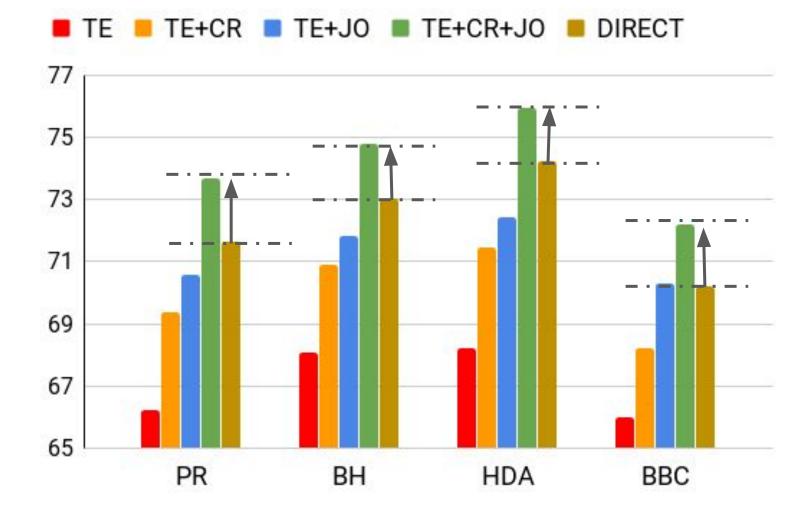
Accuracy


TE TE+CR TE+JO TE+CR+JO




TEXTUAL ENTAILMENT CONCLUSION


CLASSIFICATION PERFORMANCE



TAKE AWAY & BENEFIT OF RECASTING

In-expensive dataset creation using automatic rule over template base set

Label balance re-casted data is robust to artifacts & spurious correlations

Structural regulariser over re-casted data can remove model inconsistency

Improve representation, performance, and interpretability on downstream tasks

Diverse semantic phenomena and multiple domain dataset can be unifiedly

References

- [1] Product Review Dataset
- [2] BHAAV Dataset
- [3] Hindi Discourse Analysis Dataset
- [4] BBC News Dataset

ORIGINAL DATASET: SEMANTIC PHENOMENON

- Sentiment Analysis. Product Review Dataset (PR) [1]. online user reviews for different products in *Hindi*, 5417 sentences. 4 sentiment classes: Positive, Negative, Neutral and Conflict.
- Emotion Analysis. BHAAV Dataset (BH) ^[2]. This dataset comprises of 20,304 Hindi sentences collected from 230 short stories ranging to diverse genres. It comprises of five emotion categories: Joy, Anger, Suspense, Sad and Neutral.
- 3. Discourse Analysis. Hindi Discourse Analysis Dataset (HDA) ^[3]. This dataset consists of **10,472 sentences** for analysing different **modes of discourse**. Classes comprises of **Argumentative**, **Descriptive**, **Dialogic**, **Informative** and **Narrative**.
- 4. Topic Modelling. Hindi BBC News Dataset (BBC) ^[4]. Comprises of **4,335 hindi news** headlines. In the original dataset, there are 14 classes, merging similar labels give 6 classes: International, News, India, Sports, Science and Entertainment.